The generator matrix 1 0 0 0 1 1 1 0 0 X^2 X^2 1 1 1 1 1 X^2+X 1 X 1 X^2+X 1 1 X^2+X 1 1 1 X^2 X^2+X X^2+X 1 1 X^2 X X 1 1 X^2+X 1 1 1 1 1 0 1 X^2 X 1 X^2+X 1 X 1 0 X X^2 1 X 0 1 1 1 1 1 X^2 1 1 0 1 1 1 X 1 0 1 0 1 1 1 1 1 0 1 X^2+X 1 X 1 X^2 0 1 0 0 0 X^2 X^2 X^2 1 1 1 X^2+X+1 X+1 X+1 X^2+X+1 X X X+1 1 X+1 1 X X 0 1 X 1 X^2+X 1 1 X^2 0 1 1 0 0 X+1 1 X^2+X+1 1 X^2 X^2+X+1 1 X^2+X X X^2+X X^2 X+1 1 X+1 1 0 0 X 1 X^2+X 1 1 X^2+X+1 X^2+1 X^2+X X^2+X X^2+1 0 0 X^2 X X+1 X X^2+1 X^2 X^2+1 1 X^2+X X^2 1 1 X^2+1 X^2 0 1 1 1 X X X+1 X^2 0 0 1 0 X^2 1 X^2+1 1 X+1 0 X+1 X^2+1 X^2 0 1 X 1 1 X+1 X^2+X X^2+X+1 X+1 1 1 X^2+X+1 X^2+X X^2 X^2+X 0 X^2 X^2+X X^2+X+1 X^2 X^2+X+1 1 X^2+X X X X+1 0 X^2+X+1 0 1 1 0 1 X 0 1 X^2+X+1 X^2+1 X^2+X 1 X^2+X X X+1 1 X^2+X+1 X^2+X+1 X^2+1 X X^2+X 1 X^2+X X^2 X^2+X 1 X+1 X^2+X+1 X^2+X 1 0 X^2 1 1 X^2+1 0 X^2+X+1 X+1 0 X^2 X^2+X 0 X^2 1 1 0 0 0 0 1 X^2+X+1 X^2+X+1 0 X+1 X^2 1 X^2+1 X^2+X+1 X+1 X^2 0 0 X^2 1 X+1 0 X^2 X^2 X^2+1 X+1 0 X+1 X^2+1 1 X^2+1 X^2+X X X^2+1 X X^2+1 1 X+1 X^2+X+1 X^2+1 X+1 X X^2+X+1 1 X^2 X^2+X+1 X^2+X X^2 1 X 1 X^2+X 0 X 1 1 X^2+X X 0 X+1 X^2 X+1 0 X^2+X X+1 1 X^2+X X^2+1 X^2+X X^2+X+1 0 1 X^2+X 0 1 X^2 X^2+X X^2+1 X+1 X^2+1 X X^2+1 0 X X^2 1 X^2+X+1 X^2+X 1 generates a code of length 87 over Z2[X]/(X^3) who´s minimum homogenous weight is 81. Homogenous weight enumerator: w(x)=1x^0+274x^81+324x^82+452x^83+240x^84+562x^85+331x^86+330x^87+187x^88+378x^89+195x^90+206x^91+77x^92+154x^93+103x^94+78x^95+28x^96+68x^97+25x^98+22x^99+11x^100+36x^101+14x^102 The gray image is a linear code over GF(2) with n=348, k=12 and d=162. This code was found by Heurico 1.16 in 17.5 seconds.